PURPLE COMET! MATH MEET April 2024

MIDDLE SCHOOL - PROBLEMS

Copyright © Titu Andreescu and Jonathan Kane

Problem 1

Penelope is 36 years old. She noticed that the sum of her age and her father's age is 5 times the difference in her age and her father's age. Find Penelope's father's age.

Problem 2

The diagram below shows an 11×13 rectangle and a 11×21 rectangle attached to adjacent sides of an 11×11 square. Find the distance between the two farthest apart points in this figure.

Problem 3

Fred placed 19 blue marks on a pole that divided the pole into 20 equally-sized sections. Karen placed 16 red marks on the pole that divided the pole into 17 equally-sized sections. The distance between adjacent blue marks is m percent less than the distance between adjacent red marks, where m is a positive integer. Find m.

Problem 4

The diagram below shows a large equilateral triangle with side length 8 divided into 16 small equilateral triangles with side length 2. Find the total length of all the line segments in the diagram.

Problem 5

Let a and b be nonzero real numbers such that

$$(a - 10b)^{2} + (a - 11b)^{2} + (a - 12b)^{2} = (a - 13b)^{2} + (a - 14b)^{2}.$$

Find $\frac{a}{b}$.

Problem 6

Find the difference between the base-seven number 234_7 and the base-six number 234_6 . Express the answer as a base-ten number.

Problem 7

Let ABCD be a square with side length 24, and let E and F be the midpoints of sides \overline{AB} and \overline{CD} , respectively. Find the area of the region common to the insides of both $\triangle ABF$ and $\triangle CDE$.

Problem 8

Find the positive integer n such that

$$\frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18} + \frac{1}{24} + \frac{1}{42} + \frac{1}{n} = 1.$$

Problem 9

In $\triangle ABC$ with right angle at C, points D and E lie on side \overline{AB} and \overline{AC} , respectively, such that \overline{CD} is an altitude of $\triangle ABC$ and \overline{DE} is an altitude of $\triangle ACD$. Suppose CD = 10 and DE = 8. Then the area of $\triangle ABC$ is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

Problem 10

Nonnegative integers m and n satisfy $46^m - 2 \cdot 46^n = 2024$. Find $46^n + 2 \cdot 46^m$.

Problem 11

Find the positive integer n such that there is an integer b > 1 where the base-b representation of n is 961 and the base-(b + 1) representation of n is 804.

Problem 12

Find the sum of the squares of all integers n for which $(n+9)^2$ divides the positive integer n + 2024.

Problem 13

For any real number y, let $\{y\}$ refer to the fractional part of y, so, for example, $\{3.14\} = 3.14 - 3 = 0.14$, $\{10\} = 10 - 10 = 0$, and $\{-2.7\} = -2.7 - (-3) = 0.3$. Suppose x satisfies $3x + \{x\} = 100$. Find 4x.

Problem 14

In the following arithmetic calculation, each different letter represents a different digit:

$$\underline{PUR} + \underline{PLE} - \underline{COMET} + \underline{MEET} = 0.$$

Find the minimum possible value for the four-digit number $\underline{M} \underline{E} \underline{E} \underline{T}$.

Problem 15

In rectangle ABCD, AB = 20 and AD = 19. Point E lies on side \overline{AD} with AE = 4. Let the incircle of $\triangle CDE$ be tangent to \overline{CE} at F. A circle tangent to \overline{AB} and \overline{BC} is tangent to \overline{CE} at G. The distance FG can be written $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

Problem 16

Three red blocks, three white blocks, and three blue blocks are packed away by randomly selecting three of the nine blocks to go into a red box, then randomly selecting three of the six remaining blocks to go into a white box, and then placing the remaining three blocks in a blue box. The probability that no red blocks end up in the red box and no white blocks end up in the white box is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

Problem 17

The least real number r such that $2x + 3y + 4z \le 3x^2 + 4y^2 + 12z^2 + r$ for all real number x, y, and z is a rational number $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

Problem 18

Find the number of ordered pairs (A, B) of sets satisfying $A \subseteq B \subseteq \{1, 2, 3, 4, 5, 6\}$ where the number of elements in A plus the number of elements in B is an even number.

Problem 19

An isosceles triangle \mathcal{R} has side lengths 17, 17, and 16. Region \mathcal{S} consists of the set of points inside of \mathcal{R} that are a distance of at least 2 from the sides of \mathcal{R} . The area of \mathcal{S} divided by the area of \mathcal{R} is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

Problem 20

A 25 meter pipe that connects two reservoirs is made up of alternating 2-meter sections and 3-meter sections: 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3. Suppose three of these ten sections are selected at random and removed from the pipe. Then there are relatively prime positive integers m and n such that $\frac{m}{n}$ is the probability that the three sections can be reinserted into the pipe in a way that none of the three sections ends up in the position where it started and none of the other seven sections of pipe are moved. The 2-meter and 3-meter sections need not be alternating in the new arrangement. Find m + n.