Problem 1
Penelope is 36 years old. She noticed that the sum of her age and her father’s age is 5 times the difference in her age and her father’s age. Find Penelope’s father’s age.

Problem 2
The diagram below shows an 11×13 rectangle and a 11×21 rectangle attached to adjacent sides of an 11×11 square. Find the distance between the two farthest apart points in this figure.

![Diagram](image)

Problem 3
Fred placed 19 blue marks on a pole that divided the pole into 20 equally-sized sections. Karen placed 16 red marks on the pole that divided the pole into 17 equally-sized sections. The distance between adjacent blue marks is m percent less than the distance between adjacent red marks, where m is a positive integer. Find m.

Problem 4
The diagram below shows a large equilateral triangle with side length 8 divided into 16 small equilateral triangles with side length 2. Find the total length of all the line segments in the diagram.
Problem 5
Let a and b be nonzero real numbers such that

$$(a - 10b)^2 + (a - 11b)^2 + (a - 12b)^2 = (a - 13b)^2 + (a - 14b)^2.$$

Find $\frac{a}{b}$.

Problem 6
Find the difference between the base-seven number 234_7 and the base-six number 234_6. Express the answer as a base-ten number.

Problem 7
Let $ABCD$ be a square with side length 24, and let E and F be the midpoints of sides AB and CD, respectively. Find the area of the region common to the insides of both $\triangle ABE$ and $\triangle CDE$.

Problem 8
Find the positive integer n such that

$$\frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18} + \frac{1}{24} + \frac{1}{42} + \frac{1}{n} = 1.$$

Problem 9
In $\triangle ABC$ with right angle at C, points D and E lie on side AB and AC, respectively, such that CD is an altitude of $\triangle ABC$ and DE is an altitude of $\triangle ACD$. Suppose $CD = 10$ and $DE = 8$. Then the area of $\triangle ABC$ is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$.

Problem 10
Nonnegative integers m and n satisfy $46^m - 2 \cdot 46^n = 2024$. Find $46^n + 2 \cdot 46^m$.

Problem 11
Find the positive integer n such that there is an integer $b > 1$ where the base-b representation of n is 961 and the base-$(b + 1)$ representation of n is 804.

Problem 12
Find the sum of the squares of all integers n for which $(n + 9)^2$ divides the positive integer $n + 2024$.

Problem 13
For any real number y, let $\{y\}$ refer to the fractional part of y, so, for example, $\{3.14\} = 3.14 - 3 = 0.14$, $\{10\} = 10 - 10 = 0$, and $\{-2.7\} = -2.7 - (-3) = 0.3$. Suppose x satisfies $3x + \{x\} = 100$. Find $4x$.

2
Problem 14
In the following arithmetic calculation, each different letter represents a different digit:

\[PU \underline{R} + P \underline{L}E - C \underline{OM}E \underline{T} + M \underline{E}E \underline{T} = 0. \]

Find the minimum possible value for the four-digit number \(M \underline{E}E \underline{T} \).

Problem 15
In rectangle \(ABCD \), \(AB = 20 \) and \(AD = 19 \). Point \(E \) lies on side \(AD \) with \(AE = 4 \). Let the incircle of \(\triangle CDE \) be tangent to \(CE \) at \(F \). A circle tangent to \(AB \) and \(BC \) is tangent to \(CE \) at \(G \). The distance \(FG \) can be written \(\frac{m}{n} \), where \(m \) and \(n \) are relatively prime positive integers. Find \(m + n \).

Problem 16
Three red blocks, three white blocks, and three blue blocks are packed away by randomly selecting three of the nine blocks to go into a red box, then randomly selecting three of the six remaining blocks to go into a white box, and then placing the remaining three blocks in a blue box. The probability that no red blocks end up in the red box and no white blocks end up in the white box is \(\frac{m}{n} \), where \(m \) and \(n \) are relatively prime positive integers. Find \(m + n \).

Problem 17
The least real number \(r \) such that \(2x + 3y + 4z \leq 3x^2 + 4y^2 + 12z^2 + r \) for all real numbers \(x, y, \) and \(z \) is a rational number \(\frac{m}{n} \), where \(m \) and \(n \) are relatively prime positive integers. Find \(m + n \).

Problem 18
Find the number of ordered pairs \((A, B)\) of sets satisfying \(A \subseteq B \subseteq \{1, 2, 3, 4, 5, 6\} \) where the number of elements in \(A \) plus the number of elements in \(B \) is an even number.

Problem 19
An isosceles triangle \(R \) has side lengths 17, 17, and 16. Region \(S \) consists of the set of points inside of \(R \) that are a distance of at least 2 from the sides of \(R \). The area of \(S \) divided by the area of \(R \) is \(\frac{m}{n} \), where \(m \) and \(n \) are relatively prime positive integers. Find \(m + n \).

Problem 20
A 25 meter pipe that connects two reservoirs is made up of alternating 2-meter sections and 3-meter sections: 2, 3, 2, 3, 2, 3, 2, 3, 2, 3. Suppose three of these ten sections are selected at random and removed from the pipe. Then there are relatively prime positive integers \(m \) and \(n \) such that \(\frac{m}{n} \) is the probability that the three sections can be reinserted into the pipe in a way that none of the three sections ends up in the position where it started and none of the other seven sections of pipe are moved. The 2-meter and 3-meter sections need not be alternating in the new arrangement. Find \(m + n \).