PURPLE COMET! MATH MEET April 2024

MIDDLE SCHOOL - PROBLEMS

Copyright (C)Titu Andreescu and Jonathan Kane

Problem 1

Penelope is 36 years old. She noticed that the sum of her age and her father's age is 5 times the difference in her age and her father's age. Find Penelope's father's age.

Problem 2

The diagram below shows an 11×13 rectangle and a 11×21 rectangle attached to adjacent sides of an 11×11 square. Find the distance between the two farthest apart points in this figure.

Problem 3

Fred placed 19 blue marks on a pole that divided the pole into 20 equally-sized sections. Karen placed 16 red marks on the pole that divided the pole into 17 equally-sized sections. The distance between adjacent blue marks is m percent less than the distance between adjacent red marks, where m is a positive integer. Find m.

Problem 4

The diagram below shows a large equilateral triangle with side length 8 divided into 16 small equilateral triangles with side length 2 . Find the total length of all the line segments in the diagram.

Problem 5

Let a and b be nonzero real numbers such that

$$
(a-10 b)^{2}+(a-11 b)^{2}+(a-12 b)^{2}=(a-13 b)^{2}+(a-14 b)^{2}
$$

Find $\frac{a}{b}$.

Problem 6

Find the difference between the base-seven number 234_{7} and the base-six number 234_{6}. Express the answer as a base-ten number.

Problem 7

Let $A B C D$ be a square with side length 24 , and let E and F be the midpoints of sides $\overline{A B}$ and $\overline{C D}$, respectively. Find the area of the region common to the insides of both $\triangle A B F$ and $\triangle C D E$.

Problem 8

Find the positive integer n such that

$$
\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{12}+\frac{1}{15}+\frac{1}{18}+\frac{1}{24}+\frac{1}{42}+\frac{1}{n}=1
$$

Problem 9

In $\triangle A B C$ with right angle at C, points D and E lie on side $\overline{A B}$ and $\overline{A C}$, respectively, such that $\overline{C D}$ is an altitude of $\triangle A B C$ and $\overline{D E}$ is an altitude of $\triangle A C D$. Suppose $C D=10$ and $D E=8$. Then the area of $\triangle A B C$ is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Problem 10

Nonnegative integers m and n satisfy $46^{m}-2 \cdot 46^{n}=2024$. Find $46^{n}+2 \cdot 46^{m}$.

Problem 11

Find the positive integer n such that there is an integer $b>1$ where the base- b representation of n is 961 and the base- $(b+1)$ representation of n is 804 .

Problem 12

Find the sum of the squares of all integers n for which $(n+9)^{2}$ divides the positive integer $n+2024$.

Problem 13

For any real number y, let $\{y\}$ refer to the fractional part of y, so, for example, $\{3.14\}=3.14-3=0.14$, $\{10\}=10-10=0$, and $\{-2.7\}=-2.7-(-3)=0.3$. Suppose x satisfies $3 x+\{x\}=100$. Find $4 x$.

Problem 14

In the following arithmetic calculation, each different letter represents a different digit:

$$
\underline{P} \underline{U} \underline{R}+\underline{P} \underline{L} \underline{E}-\underline{C} \underline{O} \underline{M} \underline{E} \underline{T}+\underline{M} \underline{E} \underline{E} \underline{T}=0 .
$$

Find the minimum possible value for the four-digit number $\underline{M} \underline{E} \underline{E} \underline{T}$.

Problem 15

In rectangle $A B C D, A B=20$ and $A D=19$. Point E lies on side $\overline{A D}$ with $A E=4$. Let the incircle of $\triangle C D E$ be tangent to $\overline{C E}$ at F. A circle tangent to $\overline{A B}$ and $\overline{B C}$ is tangent to $\overline{C E}$ at G. The distance $F G$ can be written $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Problem 16

Three red blocks, three white blocks, and three blue blocks are packed away by randomly selecting three of the nine blocks to go into a red box, then randomly selecting three of the six remaining blocks to go into a white box, and then placing the remaining three blocks in a blue box. The probability that no red blocks end up in the red box and no white blocks end up in the white box is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Problem 17

The least real number r such that $2 x+3 y+4 z \leq 3 x^{2}+4 y^{2}+12 z^{2}+r$ for all real numbers x, y, and z is a rational number $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Problem 18

Find the number of ordered pairs (A, B) of sets satisfying $A \subseteq B \subseteq\{1,2,3,4,5,6\}$ where the number of elements in A plus the number of elements in B is an even number.

Problem 19

An isosceles triangle \mathcal{R} has side lengths 17,17 , and 16 . Region \mathcal{S} consists of the set of points inside of \mathcal{R} that are a distance of at least 2 from the sides of \mathcal{R}. The area of \mathcal{S} divided by the area of \mathcal{R} is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Problem 20

A 25 meter pipe that connects two reservoirs is made up of alternating 2-meter sections and 3-meter sections: $2,3,2,3,2,3,2,3,2,3$. Suppose three of these ten sections are selected at random and removed from the pipe. Then there are relatively prime positive integers m and n such that $\frac{m}{n}$ is the probability that the three sections can be reinserted into the pipe in a way that none of the three sections ends up in the position where it started and none of the other seven sections of pipe are moved. The 2-meter and 3 -meter sections need not be alternating in the new arrangement. Find $m+n$.

