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Problem 1
Ralph went into a store and bought a 10 dollar item at a 10 percent discount, a 15 dollar item at a 15

percent discount, and a 25 dollar item at a 25 percent discount. Find the percent discount Ralph received

on his trip to the store.

Answer: 19

When purchasing 10 + 15 + 25 = 50 dollars worth of items, Ralph saved 10(0.10) + 15(0.15) + 25(0.25) =

9.50 dollars. This is a savings of
9.5

50
= 0.19 = 19%.

Problem 2
The number 2025 has two identical nonzero even digits, one 0 digit, and one odd digit. Find the number of

four-digit positive integers that have two identical nonzero even digits, one 0 digit, and one odd digit.

Answer: 180

To select such a number, first determine which of 3 positions contains the digit 0. Then select which of the

4 even digits is repeated, and which of the 5 odd digits is used. Finally, select one of the 3 possible

positions for the odd digit. The requested number is 3 · 4 · 5 · 3 = 180.

Problem 3
Find the number of integers in the domain of the real-valued function

√
40− x

27−
√
2025− x2

.

Answer: 84

If x is in the domain of the function, 40− x must be nonnegative, so x ≤ 40. Also, 2025− x2 must be

nonnegative, so |x| ≤ 45. Finally, the denominator of the fraction, 27−
√
2025− x2, must be nonzero, so x

must not be −36 or 36. Thus, −45 ≤ x ≤ 40 and x ̸= −36 or 36. There are 40− (−45) + 1− 2 = 84

integers satisfying these conditions.



Problem 4
The altitudes of △ABC intersect at H. The external angles at B and C are 111◦ and 153◦, respectively, as

shown. Find the degree measure of ∠BHC.

A

B C

H

111◦ 153◦

Answer: 96

Let E and F be points on AC and AB, respectively, such that BE and CF are altitudes of △ABC. Note

that ∠ABC = 180◦ − 111◦ = 69◦, and ∠ACB = 180◦ − 153◦ = 27◦. Then ∠EBC is the complement of

∠ACB, so ∠EBC = 90◦ − 27◦ = 63◦, and ∠FCB is the complement of ∠ABC, so

∠FCB = 90◦ − 69◦ = 21◦. Thus, because the angles in △BCH sum to 180◦, it follows that

∠BHC = 180◦ − 63◦ − 21◦ = 96◦.

Alternatively, by the External Angle Theorem, ∠BAC + ∠ABC = 153◦ and ∠BAC + ∠ACB = 111◦, so

2∠BAC + ∠ABC + ∠ACB = ∠BAC + 180◦ = 153◦ + 111◦ = 264◦. It follows that

∠BAC = 264◦ − 180◦ = 84◦. Then because the angles in AEHF add to 360◦,

∠BHC = ∠EHF = 360◦ − 2 · 90◦ − ∠BAC = 180◦ − 84◦ = 96◦.

Problem 5
Evaluate

(1 + i)29

(1− i)3
, where i2 = −1.

Answer: 8192

Multiplying the denominator of the given fraction by its complex conjugate yields

(1 + i)29

(1− i)3
=

(1 + i)32

(1− i)3(1 + i)3
=

[(1 + i)2]16

[(1 + i)(1− i)]3
=

(2i)16

23
= 213 = 8192.

Problem 6
Find the greatest integer n for which n2 + 2025 is a perfect square.



Answer: 1012

Suppose there are positive integers m and n such that m2 = 2025 + n2 = 452 + n2. Then

452 = m2 − n2 = (m+ n)(m− n). When m+ n is as great as possible, m− n will be the least possible,

which is 1. Thus, m+ n = 452 = 2025 and m− n = 1. Solving these equations simultaneously yields

m = 1013 and n = 1012.

Alternatively, suppose there are positive integers m and n such that m2 = 2025 + n2 = 452 + n2.

Because n, 45, and m are a Pythagorean triple, there are positive integers r and s such that n = 2rs,

45 = r2 − s2, and m = r2 + s2. The integer n is as great as possible when r and s are as great as possible.

This happens when r and s differ by 1, so r = 23 and s = 22 and n = 2 · 22 · 23 = 1012.

Problem 7
Two rectangles each with width 3 and length 4 are placed so that they share a diagonal, as shown. The

area of the octagon shaded in the diagram is m
n , where m and n are relatively prime positive integers.

Find m+ n.



Answer: 125

Let one rectangle be ABCD and the other rectangle be AECF such that sides AB and CE intersect at a

point X, as shown. Let Y be the midpoint of the shared diagonal AC. Then the required area is four times

the area of the quadrilateral AEXY shaded in the diagram.

Y

E

C

F

A

B

D

X

Note that △ABC is a 3 – 4 – 5 right triangle, and because △XY C has a right angle at Y and shares an

angle at C with △ABC, the two triangles are similar with the ratio of similarity

CY

CE
=

5
2

4
=

5

8
.

Because △ABC has area 1
2 ·AE · CE = 1

2 · 3 · 4 = 6, the area of △XY C is 6 ·
(
5
8

)2
= 75

32 . Thus,

quadrilateral AEXY has area

Area(△ABC)−Area(△XY C) = 6− 75

32
=

117

32
.

The required area is then 4 · 117
32 = 117

8 . The requested sum is 117 + 8 = 125.

Problem 8
Let a and b be real numbers with a > b > 0 satisfying

23+log4 a+log4 b = 31+log3(a−b).

Find
a

b
.

Answer: 9

Note that for any real number u > 0,

2log4 u =
√
4
log4 u

=
√
4log4 u =

√
u.

Using this, the given equation simplifies to 8
√
ab = 3(a− b). Dividing by b and letting x =

√
a
b results in

the equation 0 = 3x2 − 8x+ 3 = (3x+ 1)(x− 3). Thus, x = 3 and the requested ratio is a
b = x2 = 9.



Problem 9
Nine red candies and nine green candies are placed into three piles with six candies in each pile. Two

collections of piles are considered to be the same if they differ only in the ordering of the piles. For

example, three piles with 2, 3, and 4 red candies is the same as piles with 4, 2, and 3 red candies, but not

the same as piles with 1, 4, and 4 red candies. Find the number of different results that are possible.

Answer: 8

Piles are distinguished by the number of red candies they contain. Piles can have up to 6 red candies, so

the possible distributions of red candies are (6, 3, 0), (6, 2, 1), (5, 4, 0), (5, 3, 1), (5, 2, 2), (4, 4, 1), (4, 3, 2),

(3, 3, 3), which accounts for 8 different results.

Problem 10
There are rational numbers a, b, and c such that, for every positive integer n,

14 + 24 + · · ·+ n4

12 + 22 + · · ·+ n2
= an2 + bn+ c.

There are relatively prime positive integers p and q such that c = −p
q . Find p+ 10q.

Answer: 51

Evaluating the given expression for n = 1, 2, 3 gives

a+ b+ c = 1

4a+ 2b+ c =
17

5

9a+ 3b+ c = 7.

This system has solution (a, b, c) =
(
3
5 ,

3
5 ,−

1
5

)
. The value of the requested expression is 1 + 10 · 5 = 51.

Alternatively, use 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6 and 14 + 24 + · · ·+ n4 = n(n+1)(2n+1)(3n2+3n−1)

30 to get

14 + 24 + · · ·+ n4

12 + 22 + · · ·+ n2
=

1

5
· n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

n(n+ 1)(2n+ 1)
=

3n2 + 3n− 1

5
.

Problem 11
Positive integers m, n, and p satisfy

m+ n+ p = 104 and

1

m
+

1

n
+

1

p
=

1

4
.

Find the greatest possible value of max(m,n, p).



Answer: 84

Let m, n, and p satisfy the given conditions. Then mnp = 4(mn+ np+ pm), so

mnp− 4(mn+ np+ pm) + 16(m+ n+ p)− 64 = 0 + 16 · 104− 64 = 16 · 104− 64 = 1600,

which implies

(m− 4)(n− 4)(p− 4) = 1600 = 26 · 52.

Without loss of generality assume that 4 < p ≤ n ≤ m.

� If p− 4 = 1, then m+ n = 99 and 1
m + 1

n = 1
4 − 1

5 , implying that mn = 20 · 99. The polynomial

x2 − 99x+ 20 · 99 does not have integer roots, so there is not a pair of integers m and n with

m+ n = 99 and mn = 20 · 99.

� If p− 4 = 2, then m+ n = 98 and 1
m + 1

n = 1
4 − 1

6 , implying that mn = 12 · 98. The polynomial

x2 − 98x+ 12 · 98 has roots m = 84 and n = 14.

� If p− 4 = 4, then m+ n = 96 and 1
m + 1

n = 1
4 − 1

8 , implying that mn = 8 · 96. The polynomial

x2 − 96x+ 8 · 96 does not have integer roots.

� If p− 4 = 5, then m+ n = 95 and 1
m + 1

n = 1
4 − 1

9 , implying that mn = 19 · 36. The polynomial

x2 − 95x+ 19 · 36 = 0 does not have integer roots.

� If p− 4 = 8, then m+ n = 92 and 1
m + 1

n = 1
4 − 1

12 , implying that mn = 6 · 92. The polynomial

x2 − 92x+ 6 · 92 = 0 does not have integer roots.

� Finally, if p− 4 >= 10, then n ≥ p ≥ 10, implying that m ≤ 84.

Hence max(m,n, p) = 84.

Problem 12
Find the number of ways to mark a subset of the sixteen 1× 1 squares in a 4× 4 grid of squares in such a

way that each 2× 2 grid within the 4× 4 grid contains the same number of marked squares, as in the

example below, where each 2× 2 grid contains one marked square.



Answer: 56

The 4× 4 grid contains 9 2× 2 grids. Consider the number of marked squares in the center 2× 2 grid of a

correctly marked 4× 4 grid.

0: If there are no marked squares in the center grid, then there are no marked squares in the entire grid.

There is 1 such possible marking.

1: If there is 1 marked square in the center grid, then the eight 1× 1 squares surrounding that marked

square must be unmarked. There are then 3 ways to mark the seven 1× 1 squares that are not

contained in those four 2× 2 grids. Because there are 4 possible squares in the center grid, this

accounts for 4 · 3 = 12 possible markings.

2: If there are 2 marked squares in the center grid, then there are 4 ways for those 2 marked squares to

share a side and 2 ways for them to share only a vertex. If they share a side, there are 4 ways to

mark the remaining squares. If they only share a vertex, then there are 3 ways to mark each of the

two 2× 2 squares that contain a marked center square and a corner square. But for two of the

possible 3 · 3 = 9 ways to mark these two cells, there is no way to complete the markings for the

entire grid. For the other 7 ways to mark these two cells, there is a unique way to complete the

markings for the entire grid. Thus, this case accounts for 4 · 4 + 2 · 7 = 30 possible markings.

3: If there are 3 marked squares in the center grid, the markings are a complement of the case where

there is 1 marked square, so there are 12 possible markings.

4: If there are 4 marked squares in the center grid, all the squares of the 4× 4 grid are marked. There is

1 such possible marking.

This accounts for 1 + 12 + 30 + 12 + 1 = 56 possible markings.

Problem 13
Find k so that the roots of the polynomial x3 − 30x2 + kx− 840 form an arithmetic progression.



Answer: 284

By Vieta’s Formulas, the sum of the 3 roots of the polynomial is 30 and their product is 840. Because the

roots form an arithmetic progression, one of the 3 roots must be the mean of the roots, 30
3 = 10. If the

common difference in the arithmetic progression is d, then the 3 roots are 10− d, 10, and 10 + d. Their

product is (10− d)10(10 + d) = 10(100− d2) = 840. It follows that d = ±4. Thus, the 3 roots are 6, 10,

and 14, and the polynomial factors as (x− 6)(x− 10)(x− 14). The sum of the coefficients of the

polynomial is equal to the polynomial evaluated at x = 1, so the sum of the coefficients is

(1− 6)(1− 10)(1− 14) = −585 = 1− 30 + k − 840.

It follows that k = 284.

Problem 14
Let x, y, and z be real numbers satisfying

x2 +
2

x
= yz y2 − 3

y
= zx z2 +

1

z
= xy.

Find x+ y + z.

Answer: 0

The three equations are equivalent to xyz = x3 + 2 = y3 − 3 = z3 + 1. Adding these together gives

3xyz = x3 + y3 + z3. But then

0 = x3 + y3 + z3 − 3xyz =
1

2
· (x+ y + z) ·

(
(x− y)2 + (y − z)2 + (z − x)2

)
.

It is not possible for x = y = z, so this implies that x+ y + z = 0, which is the requested sum. To show

that the system does have real valued solutions, note that y3 = x3 +5 and z3 = x3 +1, so that if w = x3, it

follows from cubing x3 + y3 + z3 = 3xyz that (3w + 6)3 = 27w(w + 5)(w + 1). This reduces to a linear

polynomial equation with solution w = − 8
7 , so there are real values of x, y, and z that satisfy

x3 + y3 + z3 = 3xyz. Because these values also satisfy y3 = x3 + 5 and z3 = x3 + 1, they satisfy the given

system.

Alternatively, let u = xyz. Then x3 = u− 2, y3 = u+ 3, and z3 = u− 1, from which

u3 = (u− 2)(u+ 3)(u− 1), which implies that u = 6
7 . Then

x+ y + z =
3

√
−8

7
+

3

√
27

7
− 3

√
−1

7
= 0.



Problem 15
Circle ω1 with radius 20 passes through the vertices of a square. Circle ω2 has a diameter that is one side

of the square. The region inside ω1 but outside of ω2, as shaded in the diagram, has an area that is

between the integer N and the integer N + 1. Find N .

ω2

ω1

Answer: 828

Let A and B be the vertices of the square that are the two endpoints of the diameter of ω2, and let C be

the center of the square, which is also the center of ω1.

ω2

ω1

C
B

A

Triangle △ABC has base length 20
√
2 and altitude 10

√
2, so its area is 1

2 · 20
√
2 · 10

√
2 = 200. The sector

of ω1 within ∠ACB is one-quarter of ω1, so its area is 1
4 · π(20)2 = 100π. Thus, the crescent of ω1 inside

∠ACB but outside the square has area 100π − 200. So the region inside ω2 but outside ω1 is the region

inside the semicircle of ω2 outside of the square with the crescent of ω1 removed. Because circle ω2 has

radius 10
√
2, the area of the region inside ω2 outside ω1 is 1

2 · π(10
√
2)2 − (100π − 200) = 200. Then the

region inside ω2 that is also inside of ω1 has area π(10
√
2))2 − 200 = 200π − 200. Finally, the area of the

shaded region inside ω1 but outside ω2 is π · 202 − (200π − 200) = 200π + 200. Because 3.14 < π < 3.145, it

follows that 828 < 200π + 200 < 829. The requested N is 828.

Problem 16
There is a real number a in the interval

(
0, π

2

)
such that sec4 a+ tan4 a = 5101. Find the value of

sec2 a+ tan2 a.



Answer: 101

Because sec2 a− tan2 a = 1 and

(
sec2 a+ tan2 a

)2
+
(
sec2 a− tan2 a

)2
= 2

(
sec4 a+ tan4 a

)
,

it follows that
(
sec2 a+ tan2 a

)2
= 2 · 5101− 1 = 10201 = 1012. The requested quantity is 101.

Problem 17
Let a be a real number greater than 1 satisfying

a+
1

a
=

√
7 +

√
41

2
+

√
7−

√
41

2
and

a3 − 1

a3
= m+ n

√
2,

where m and n are positive integers. Find 10m+ n.

Answer: 108

Squaring the first equation yields(
a+

1

a

)2

=
7 +

√
41

2
+

7−
√
41

2
+ 2

√
49− 41

4
= 7 + 2

√
2.

Subtracting 4 from both sides gives(
a+

1

a

)2

− 4 =

(
a− 1

a

)2

= 3 + 2
√
2 =

(
1 +

√
2
)2

.

Hence a− 1
a = 1 +

√
2, so

a3 − 1

a3
=

(
a− 1

a

)((
a− 1

a

)2

+ 3

)
=
(
1 +

√
2
)(

3 + 2
√
2 + 3

)
= 10 + 8

√
2.

The requested expression is 10 · 10 + 8 = 108.

Problem 18
In a 4× 4 grid of cells, coins are placed at random into 8 of the 16 cells so that there are 2 coins in each

row and 2 coins in each column of the grid. The probability that all 4 cells of at least one of the two

diagonals of the grid contain coins can be written as m
n , where m and n are relatively prime positive

integers. Find m+ n.

Answer: 107

Number the rows of the grid from top to bottom with 1, 2, 3, and 4, and number the columns from left to

right with 1, 2, 3, and 4. Then the rows where coins are placed in a particular column of the grid must be

one of the pairs 12, 13, 14, 23, 24, or 34. There are two ways for these rows to be chosen.



� If no two columns contain coins in the same set of two rows, then two of the columns must use two of

the row pairs 12, 13, or 14. Once coins are placed in two columns using those two pairs for the rows,

there will be one row that contains no coins. This determines which of the two pairs of 23, 24, or 34

must be used. Because there are 3 ways of selecting two of the pairs 12, 13, and 14, and then 4! ways

to order the columns, there are 3 · 4! = 72 ways to place the coins in this case.

� If two columns both contain coins in the same two rows, then it must be that the other two columns

both contain coins in the other two rows. There are 6 ways to choose the rows for coins in column 1

and 3 ways to choose another column with coins in those same rows. Thus, there are 6 · 3 = 18 ways

to place the coins in this case.

Therefore, there are 72 + 18 = 90 equally likely ways to place 8 coins so there are 2 coins in each row and 2

coins in each column.

Suppose coins are placed on the grid with 2 coins in each row and 2 coins in each column such that coins

appear along the main diagonal of the grid. Then the first column of the grid has coins in rows 1 and a,

where a is one of 2, 3, or 4. Consider the placement of coins in column a. Column a of the grid will have a

coin in row a and one other row.

� If the other row is row b where b ̸= 1, then let c be the column number which is not 1, a, or b. Then

column b will have to have coins in rows b and c, and column c will have to have coins in rows 1 and

c. Thus, there are 3 choices for the value of a and then 2 choices for the value of b, and the rest of the

coin placements are fixed. Therefore, there are 3 · 2 = 6 ways to place the coins in this way.

� If the other row is 1, then both columns 1 and a have coins in both rows 1 and a, so the other two

columns will have coins in the other 2 rows. There are 3 choices for the value of a, so there are 3

ways to place coins in this way.

Hence, there are 6 + 3 = 9 ways to place coins so that coins appear on the main diagonal of the grid.

Similarly, there are 9 ways to place coins so that coins appear on the other diagonal of the grid. Because

there is 1 way to place coins so that there are coins on both diagonals, there is a total of 9 + 9− 1 = 17

ways to place the coins so that there are coins on at least one of the diagonals. It follows that the required

probability it 17
90 . The requested sum is 17 + 90 = 107.

Problem 19
The equation

(3x+ 1)(4x+ 1)(6x+ 1)(12x+ 1) = 5

has a solution of the form
−p+i

√
q

r , where p is a prime number, q and r are positive integers, and i =
√
−1.

Find p+ q + r.



Answer: 68

The given equation is equivalent to

(12x+ 4)(12x+ 3)(12x+ 2)(12x+ 1) = 120.

Let y = 12x. Then [
(y + 4)(y + 1)

][
(y + 3)(y + 2)

]
= 120,

implying (
y2 + 5y + 4

) (
y2 + 5y + 6

)
= 120.

Hence,
(
y2 + 5y + 5

)2 − 1 = 120, yielding y2 + 5y + 5 = ±11. It follows that the non-real solutions are

y = 12x =
−5±

√
25− 64

2
,

so the required solution is −5+i
√
39

24 . The requested sum is 5 + 39 + 24 = 68.

Problem 20
Two fair, standard six-sided dice are rolled. The expected value of the nonnegative difference in the two

numbers obtained can be written as m
n , where m and n are relatively prime positive integers. Find m+ n.

Answer: 53

Because each die results in one of the numbers 1, 2, 3, 4, 5, 6, the possible nonnegative differences are

0, 1, 2, 3, 4, 5. For each k from 1 to 5, there are 2(6− k) ways for the two dice to roll numbers that differ by

k. Thus, the required expected value is

1 · 10
36

+ 2 · 8

36
+ 3 · 6

36
+ 4 · 4

36
+ 5 · 2

36
=

70

36
=

35

18
.

The requested sum is 35 + 18 = 53.

Problem 21
Let T be the triangle in the complex plane with vertices at −8 + i, 1 + 2i, and 4 + 6i. The inradius of T is

equal to
m(n−√

p)

q
,

where m, n, p,and q are positive integers and m and q are relatively prime. Find m+ n+ p+ q.



Answer: 125

The length of the inradius r is given by
K

s
, where K is the area of the triangle and s is its semiperimeter.

The area K is equal to the absolute value of

1

2
det


−8 1 1

1 2 1

4 6 1

 ,

that is, K =
33

2
, while

2s =
√
(−8− 1)2 + (1− 2)2 +

√
(1− 4)2 + (2− 6)2 +

√
(4 + 8)2 + (6− 1)2

=
√
82 + 5 + 13.

Hence,

r =
33

18 +
√
82

=
3(18−

√
82)

22
.

The requested sum is 3 + 18 + 82 + 22 = 125.

Problem 22
Find the sum of the prime numbers that divide the sum

12 + 22 − 32 + 42 + 52 − 62 + · · · 1962 + 1972 − 1982 + 1992.

Answer: 166

The sum can be rewritten as

12 + 22 + 32 + · · ·+ 1992 − 2
(
32 + 62 + 92 + · · ·+ 1982

)
= 12 + 22 + · · ·+ 1992 − 18

(
12 + 22 + · · ·+ 662

)
,

which is equal to

199 · 200 · 399
6

− 18 · 66 · 67 · 133
6

= 133(199 · 100− 3 · 66 · 67)

= 2 · 133(199 · 50− 99 · 67) = 2 · 7 · 19 · 31 · 107.

The requested sum is 2 + 7 + 19 + 31 + 107 = 166.



Problem 23
Four books (B), four bookends (E), and three vases (V) are aligned on a bookshelf in random order. The

alignment is stable if every adjacent set of one or more books has a bookend at each end, as in

VVEBBEBBEVE or EBBBEVVEBEV. If the books, bookends, and vases are aligned on the bookshelf in

random order, the probability that the resulting alignment is stable is m
n , where m and n are relatively

prime positive integers. Find m+ n.

Answer: 1952

The problem is equivalent to finding the probability that a randomly selected permutation of the 11 letters

BBBBEEEEVVV is stable, that is, each sequence of Bs has an E on each end. There are
(

11
4,4,3

)
= 11!

4!·4!·3!

equally likely arrangements of the 11 letters. Ignoring the Vs, there are
(
6
2

)
= 15 permutations of the Bs

and Es that begin and end with an E. For each of these permutations, it is necessary to count the number

of ways three Vs can be inserted into the permutation so that the result is stable. The number of ways to

insert the Vs can be counted using the sticks-and-stones method. The 15 arrangements of Bs and Es come

in three types.

� There are 3 permutations where there are 2 places where an E is next to another E (EEEBBBBE,

EEBBBBEE, EBBBBEEE). For each of these permutations, there are 4 locations where the 3 Vs can

be inserted so that the arrangement is stable, and this can be done in
(
3+4−1

3

)
= 20 ways. This

therefore accounts for 3 · 20 = 60 stable arrangements.

� There are 9 permutations where there is one place where an E is next to another E (such as

EBEEBBBE or EBBEBBEE). For each of these permutations, there are 3 locations where the 3 Vs

can be inserted so that the arrangement is stable, and this can be done in
(
3+3−1

3

)
= 10 ways. This

therefore accounts for 9 · 10 = 90 stable arrangements.

� There are 3 permutations where there is no E next to another E (EBEBEBBE, EBEBBEBE,

EBBEBEBE). For each of these permutations, there are 2 locations where the 3 Vs can be inserted so

that the arrangement is stable, and this can be done in
(
3+2−1

3

)
= 4 ways. This therefore accounts for

3 · 4 = 12 stable arrangements.

The required probability is
(60 + 90 + 12)4! · 4! · 3!

11!
=

27

1925
.

The requested sum is 27 + 1925 = 1952.



Problem 24
Three distinct real numbers x1, x2, and x3 in the interval [0, π] satisfy the equation sec(2x)− secx = 2.

There are relatively prime positive integers m and n such that

π

x1 + x2 + x3
=

m

n
.

Find 10m+ n.

Answer: 59

Let t = cosx. Then sec(2x)− secx = 2 becomes

1

2t2 − 1
− 1

t
= 2,

which can be rewritten as t =
(
2t2 − 1

)
(2t+ 1). It follows that 4t3 + 2t2 − 3t− 1 = 0, which is equivalent

to (t+ 1)
(
4t2 − 2t− 1

)
= 0. Hence, cosx1, cosx2, and cosx3 are −1, 1+

√
5

4 , and 1−
√
5

4 , in some order.

Therefore, x1, x2, and x3 are π, π
5 , and

3π
5 . Then

m

n
=

π

x1 + x2 + x3
=

1

1 + 1
5 + 3

5

=
5

9
.

The requested sum is 10 · 5 + 9 = 59.

Problem 25
There are three 1-pound dumbbells, three 2-pound dumbbells, and three 3-pound dumbbells. These nine

dumbbells are randomly placed into three piles with three dumbbells in each pile. The probability that at

least two of the piles have the same total weight is m
n , where m and n are relatively prime positive integers.

Find m+ n.

Answer: 37

Two piles can weight the same if they contain the same distribution of dumbbells or if one pile contains a

1-pound dumbbell, a 3-pound dumbbell, and a third dumbbell while another pile contains two 2-pound

dumbbells and the same third dumbbell. The distribution of dumbbells could be one of (123, 123, 123),

(113, 122, 233), or (133, 223, 112). Considering all nine dumbbells as distinguishable and the three piles as

distinguishable, there are
(

9
3,3,3

)
= 9!

3!·3!·3! equally likely ways to place the dumbbells into piles. The

required probability is then(
3

1,1,1

)3

+ 6 ·
(

3
2,1,0

)(
3

0,2,1

)(
3

1,0,2

)
+ 6 ·

(
3

1,0,2

)(
3

0,2,1

)(
3

2,1,0

)
(

9
3,3,3

) =

(6 · 6 · 6 + 6 · 3 · 3 · 3 + 6 · 3 · 3 · 3) 6 · 6 · 6
9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

=
9

28
.

The requested sum is 9 + 28 = 37.



Problem 26
Let a and b be distinct real numbers such that 2a3 + (1 +

√
3)ab+ 2b3 = 5+3

√
3

54 . Find (6a+ 6b− 1)6.

Answer: 27

Multiplying both sides of the given condition by 108 gives 216a3 + 108(1 +
√
3)ab+ 216b3 = 10 + 6

√
3,

which implies that (6a)3 + (6b)3 + (−1−
√
3)3 = 3 · 6a · 6b(−1−

√
3). If u, v, and w are real numbers that

are not all equal, then u3 + v3 + w3 = 3uvw implies that u+ v + w = 0. Thus, 6a+ 6b+ (−1−
√
3) = 0.

Hence, 6a+ 6b− 1 =
√
3, yielding (6a+ 6b− 1)6 = 33 = 27.

Problem 27
Cyclic quadrilateral ABCD has side lengths AB = BC = 3 and CD = DA = 4. A point is selected

randomly from inside the quadrilateral. Given that the point is closer to diagonal AC than to diagonal

BD, the probability that the point lies inside △ABC is m
n , where m and n are relatively prime positive

integers. Find m+ n.

Answer: 10

Because
>
BCD =

>
BAD , it follows that BD is a diameter of the circumcircle of ABCD with BD = 5. Let

E be the point where AC intersects BD. Then, ∠BCD = ∠BAD = 90◦, and triangles △BCD, △BAD,

△BEC, △BEA, △CED, and △AED are all similar to a 3 – 4 – 5 right triangle.

A

B

C

D
E

Hence, BE = 3
5 ·BC = 9

5 , DE = 5−BE = 16
5 , and AE = CE = 4

5 ·AB = 12
5 . For any triangle with side

lengths a, b, and c, the probability that a point randomly chosen inside the triangle is closer to the side

with length c than to the other two sides is c
a+b+c . Indeed, a point in the triangle is closer to the side with

length c if it lies on the correct side of the two angle bisectors of the angles adjacent to the side with length

c. That places the point inside a triangle with base c and altitude equal to the inradius r of the original

triangle. The area of that triangle divided by the area of the original triangle is

1
2 · cr

1
2 · (a+ b+ c)r

=
c

a+ b+ c
,

which is the desired probability.



c

b a

r

r r

Because the area of △ABC is 1
2 ·AC ·BE, and the area of ABCD is 1

2 ·AC ·BD, the probability that a

randomly chosen point inside ABCD is inside △ACB is BE
BD = 9

25 and is inside △ACD with probability

16
25 . The probability that the point is closer to AC than to BD and is inside △ABC is, therefore,

9

25
·

12
5

12
5 + 9

5 + 3
=

3

25
,

and the probability that the point is closer to AC than to BD and is inside △ACD is

16

25
·

12
5

12
5 + 16

5 + 4
=

4

25
.

The required conditional probability is
3
25

3
25 + 4

25

=
3

7
.

The requested sum is 3 + 7 = 10.

Alternatively, let E be defined as above, and let X and Y be on sides AB and AD, respectively, such that

EX and EY bisect ∠AEB and ∠AED, respectively. Then the needed probability is the probability that a

point randomly chosen in △ABD is in △ABE given that it is closer to AE than to BD. This is equal to
Area(△AXE)

Area(AXEY )
.

A

BD
E

X

Y

Because △ABD ≃ △EBA ≃ △EAD, it follows that Area(△EBA) = Area(△ABD) · 9
25 and

Area(△EAD) = Area(△ABD) · 16
25 . By the Angle Bisector Theorem AX

BX = AE
BE = 4

3 and AY
DY = AE

DE = 3
4 .

Thus, Area(△AXE) = Area(△EBA) · 4
7 = Area(△ABD) · 9

25 · 4
7 and

Area(△AY E) = Area(△EAD) · 3
7 = Area(△ABD) · 16

25 · 3
7 . Therefore, the needed probability is

Area(△AXE)

Area(AXEY )
=

9
25 · 4

7
9
25 · 4

7 + 16
25 · 3

7

=
3

7
,

as above.



Problem 28
You have five coins. Each coin is either a fair coin or an unfair coin that always come up heads when it is

flipped. For k = 1, 2, 3, 4, 5, the probability that you have k unfair coins is k
15 . Suppose that you flip each

coin once, and four of them come up heads. The expected number of fair coins among the five is m
n , where

m and n are relatively prime positive integers. Find m+ n.

Answer: 17

The probabilities that the coins will come up with 4 heads and 1 tail given that there are 0, 1, 2, 3, 4, or 5

fair coins are 0, 1
2 ,

1
2 ,

3
8 ,

1
4 , and

5
32 , respectively. Thus, the probability that you will get exactly 4 heads

when flipping each coin once is

1

15
·
(
4
3

)
24

+
2

15
·
(
3
2

)
23

+
3

15
·
(
2
1

)
22

+
4

15
·
(
1
0

)
21

+
5

15
· 0 =

3

10
.

Therefore, the expected number of fair coins is

4 · 1
15 · (

4
3)
24 + 3 · 2

15 · (
3
2)
23 + 2 · 3

15 · (
2
1)
22 + 1 · 4

15 · (
1
0)
21 + 0 · 5

15 · 0
3
10

=
11

6
.

The requested sum is 11 + 6 = 17.

Problem 29
A large sphere with radius 7 contains three smaller balls each with radius 3. The three balls are each

externally tangent to the other two balls and internally tangent to the large sphere. There are four right

circular cones that can be inscribed in the large sphere in such a way that the bases of the cones are

tangent to all three balls. Of these four cones, the one with the greatest volume has volume nπ. Find n.

Answer: 128

Let O be the center of the large sphere, A, B, and C be the centers of the balls with radius 3, and G be the

centroid of equilateral triangle △ABC. Let D and E be endpoints of the diameter of the large sphere that

passes through G, and note that this diameter is perpendicular to the plane of △ABC. Because the ball

with center A is internally tangent to the sphere, AO = 7− 3 = 4. The side length of △ABC is 2 · 3 = 6, so

AG = 2
3 · 6 ·

√
3
2 = 2

√
3. Thus by the Pythagorean Theorem GO =

√
AO2 −AG2 =

√
42 −

(
2
√
3
)2

= 2. Let

M and N be points on line GO a distance 3 from G with O on segment GM . Hence MO = 1 and NO = 5.



D

E

A
B

C
G

O

M

N

The planes perpendicular to line GO at M and N are parallel to the plane of △ABC and a distance 3

from it, so they are both tangent to all three balls. The four cones whose bases are tangent to the three

balls have their bases on one of these two planes and vertices at D or E. A cone inscribed in the large

sphere with its base centered at M has base radius given by the Pythagorean Theorem as
√
72 − 12 =

√
48

and a height of either DM = 7− 1 = 6 or EM = 7 + 1 = 8. The volume of the larger of these two cones is

1
3 · π · 8

(√
48
)2

= 128π. A cone inscribed in the large sphere with its base centered at N has base radius
√
72 − 52 =

√
24 and a height of either DM = 7 + 5 = 12 or EN = 7− 5 = 2. The volume of the larger of

these two cones is 1
3 · π · 12

(√
24
)2

= 96π. The requested coefficient of π is 128.

Note:Two of the four cones contain the center of the large sphere. A more challenging problem would be

to ask for the volume of the region inside both of those cones.

Problem 30
A meeting is held in a room with 7 chairs equally spaced in a circle. Five participants will randomly choose

to sit in 5 of the 7 chairs for the morning session of the meeting. After lunch the same 5 participants will

again randomly choose to sit in 5 of the 7 chairs for the afternoon session. The probability that no two

people who sit in adjacent chairs during the morning session will sit in adjacent chairs in the afternoon

session is m
n , where m and n are relatively prime positive integers. Find m+ n.



Answer: 67

Number the chairs in order from 1 to 7. Without loss of generality, chair number 7 always remains empty.

Let A, B, C, D, and E represent the five people in the order they sit in the chairs numbered from 1 to 6

during the morning session, and let X represent the second empty chair. Thus, there are six equally likely

possible seatings in the morning session: ABCDEX, ABCDXE, ABCXDE, ABXCDE, AXBCDE, and

XABCDE. In the afternoon session, any of the 6! = 720 equally likely permutations of ABCDEX are

possible. Let SAB represent pairs of morning and afternoon seating arrangements where A and B sit in

adjacent chairs during both sessions. Define SBC , SCD, and SDE analogously. Then out of the 6 · 6!

equally likely pairings of morning and afternoon seatings, SAB ∪ SBC ∪ SCD ∪ SDE represent the pairings

where there are two people who sit in adjacent chairs in both the morning and afternoon sessions. The size

of this set can be determined using the Inclusion/Exclusion Principle.

� An element is in SAB if the X does not lie between the A and B in the morning session, and there is

an AB or a BA in the afternoon session. There are 5 possible positions for the X in the morning

session, two possible orderings of AB in the afternoon session, and 5! possible permutations of AB, C,

D, E, and X. This accounts for 5 · 2 · 5! = 1200 orderings. Each of SBC , SCD, and SDE also has this

size, so |SAB |+ |SBC |+ |SCD|+ |SDE | = 4 · 1200 = 4800.

� An element is in SAB ∩ SBC if the X does not lie between A and B or between B and C in the

morning session, and there is an ABC or a CBA in the afternoon session. There are 4 possible

positions for the X in the morning session, 2 possible orderings of ABC in the afternoon session, and

4! possible permutations of ABC, D, E, and X. This accounts for 4 · 2 · 4! = 192 orderings. Each of

SBC ∩ SCD and SCD ∩ SDE also has this size, accounting for 3 · 192 = 576 orderings.

� An element is in SAB ∩ SCD if the X does not lie between A and B or between C and D in the

morning session, and there is an AB or BA and a CD or DC in the afternoon session. There are 4

possible positions for the X in the morning session, 2 possible orderings of AB and 2 possible

orderings of CD in the afternoon session, and 4! possible permutations of AB, CD, E, and X. This

accounts for 4 · 2 · 2 · 4! = 384 orderings. Each of SAB ∩ SDE and SBC ∩ SDE also has this size,

accounting for 3 · 384 = 1152 orderings.

� An element is in SAB ∩ SBC ∩ SCD if the X does not lie between A and B, between B and C, or

between C and D in the morning session, and there is an ABCD or a DCBA in the afternoon session.

There are 3 possible positions for the X in the morning session, 2 possible orderings of ABCD in the

afternoon session, and 3! possible permutations of ABCD, E, and X. This accounts for 3 · 2 · 3! = 36

orderings. The set SBC ∩ SCD ∩ SDE also has this size, accounting for 2 · 36 = 72 orderings.



� An element is in SAB ∩ SBC ∩ SDE if the X does not lie between A and B, between B and C, or

between D and E in the morning session, and there is an ABC or CBA and a DE or ED in the

afternoon session. There are 3 possible positions for the X in the morning session, 2 possible

orderings of ABC and 2 possible orderings of DE in the afternoon session, and 3! possible

permutations of ABC, DE, and X. This accounts for 3 · 2 · 2 · 3! = 72 orderings. The set

SAB ∩ SCD ∩ SDE also has this size accounting for 2 · 72 = 144 orderings.

� An element is in SAB ∩ SBC ∩ SCD ∩ SDE if X does not lie between any two letters in the morning

session, and there is an ABCDE or EDCBA in the afternoon session. There are 2 possible positions

for X in the morning session, 2 possible orderings of ABCDE in the afternoon session, and 2!

permutations or ABCDE and X. This accounts for 2 · 2! · 2 = 8 orderings.

The Inclusion/Exclusion Principle gives the size of SAB ∪ SBC ∪ SCD ∪ SDE as

4800− (576 + 1152) + (72 + 144)− 8 = 3280.

The required probability is, therefore, 1− 3280
6·720 = 13

54 . The requested sum is 13 + 54 = 67.


